笔下文学小说网 > 灵异恐怖 > 师生心理学江湖:对话手册 > 第180章 课·一次游戏vs多次游戏:博弈论中的“远见”法则—课堂对话

第180章 课·一次游戏vs多次游戏:博弈论中的“远见”法则—课堂对话(2 / 2)

“那如果所有人都作弊呢?”蒋尘突然问,“比如一个班里,大家都作弊,每个人都拿满分,这不是‘双赢’吗?”

教授反问:“真的是双赢吗?如果这个班的学生永远不走出校门,可能看起来没问题,但人总要进入社会。社会里的‘考试’,没有考官和分数,只有行为和后果——比如一个作弊拿到高分的医学生,到了医院不会做手术;一个作弊拿到证书的工程师,设计的桥梁会塌。人生是场‘无限游戏’,校园里的作弊,只是‘预演’,真正的代价在后面。”

“这就像中国古代的科举,为什么能运转上千年?”教授继续说,“科举也有作弊,但处罚极重——一旦发现科场舞弊,不仅考生被流放,考官也要掉脑袋。所以作弊是少数,不影响整体公平。今天的高考也是如此,作弊被发现,不仅取消成绩,还会记入诚信档案,影响未来升学就业——这种‘一次作弊影响终身’的规则,让大多数人不敢碰红线。一个系统能长期运转,核心是‘规则能防止自毁’:如果全员作弊,系统输出的都是‘不合格产品’,最终会被淘汰。”

“我们再延伸到‘无限游戏’——比‘多次游戏’更长久的,是‘希望游戏一直玩下去’。”教授举NbA的例子,“NbA为什么能成为最成功的体育联赛之一?因为它有两个关键规则:第一,选秀时战绩差的球队先选新秀,比如上赛季垫底的球队,能优先选潜力新人;第二,设置工资帽,防止有钱的球队签下所有巨星。这两个规则,就是为了避免‘马太效应’——强者越强,弱者越弱。如果某支球队永远赢,观众会看腻,联赛会没人关注;只有各队实力平衡,才有悬念,游戏才能一直玩下去。”

“这背后是哲学里的‘可持续发展思维’——无限游戏的目标不是‘赢一次’,而是‘让游戏持续’。”教授总结,“比如商业合作,不是‘赚一次快钱’,而是‘长期共赢’;比如人际关系,不是‘利用一次’,而是‘长久信任’。很多人理解错博弈,就是把‘人生这场无限游戏’,当成了‘几次独立的一次游戏’——比如为了眼前的利益,欺骗客户、背叛朋友,看似赢了一次,却输掉了未来所有可能的合作。”

“那什么是‘远见’?”秦易问。

“远见,就是在一次游戏里,想到多次的后果;在有限游戏里,看到无限的可能。”教授说,“比如有人找工作,只看‘第一个月工资多少’,不看‘未来有没有成长空间’——这就是用一次游戏的策略(短期收益)应对多次游戏(职业发展);有人做项目,只想着‘这次能赚多少钱’,不考虑‘会不会伤害品牌口碑’——这就是用有限游戏的规则(单次项目)套无限游戏(品牌长期发展)。”

课堂接近尾声,教授抛出思考题:“假设你们是学校的教务老师,要设计一套‘减少考试作弊’的方案,除了‘加大处罚力度’,还能从‘多次游戏’和‘无限游戏’的逻辑出发,增加哪些规则?比如如何让‘不作弊的长期收益’大于‘作弊的短期好处’?”

“大家可以课后分组讨论,下次上课分享方案。觉得今天的博弈论分析有启发的同学,别忘了点赞支持——很多生活里的选择,比如‘要不要熬夜赶工’‘要不要拖延作业’,其实都能用‘一次vs多次游戏’的逻辑判断。下次课,我们会聊‘博弈论在人际交往中的应用’——比如为什么‘真诚待人’是长期最优策略,不见不散!”

“一次游戏vs多次游戏”课堂总结:

该课堂由和蔼教授带领叶寒、秦易等五位同学,以博弈论为核心,结合心理学、哲学原理与现实案例,拆解“一次游戏”与“多次游戏(含无限游戏)”的不同玩法,最终指向“远见”的本质。

课堂开篇,教授先明确博弈论分类(零和游戏、非零和游戏),指出非零和游戏中“双输”易成纳什均衡,而生活中博弈多为“多次游戏”,策略需区别于“一次游戏”。随后以考试作弊为例计算收益:一次考试中,作弊被发现概率5%时,收益期望为4.5,看似“合算”;但多次考试下,随次数k增加,全部作弊成功概率骤降(k=30时仅21%),收益期望转为负数(k=30时约-16),且现实中作弊成功的“即时满足”会通过“操作性条件反射”强化行为,“只作弊一次”多为自欺欺人。

教授进一步用正反案例对比规则的影响:英美股市、美国打假靠“一次作弊清盘”(没收所得+倾家荡产)遏制违规;而体育赛场因“作弊收益>损失”(如阿姆斯特朗保留千万收入),禁药问题频发。同时提及科举、高考因“重罚舞弊”(科举考官连坐、高考记诚信档案),保障系统长期运转,避免“全员作弊致系统自毁”。

针对“无限游戏”,教授以NbA为例,其“弱队先选秀”“工资帽”规则,规避“马太效应”,保障赛事悬念,体现“无限游戏目标是让游戏持续”的哲学思维。最后总结:“远见”即不用一次游戏策略应对多次挑战,不用有限规则套无限未来;并抛出思考题——作为教务老师,除重罚外,如何从“多次\/无限游戏”逻辑设计减作弊方案。